Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.17.549430

ABSTRACT

In order to investigate SARS-CoV-2 mutations and their impact on immune evasion and infectivity, we developed a Deep Mutational Scanning (DMS) platform utilizing an inverted infection assay to measure spike expression, ACE2 affinity, and viral infectivity in human cells. Surprisingly, our analysis reveals that spike protein expression, rather than ACE2 affinity, is the primary factor affecting viral infectivity and correlated with SARS-CoV-2 evolution. Notably, within the N-terminal domain (NTD), spike expression and infectivity-enhancing mutations are concentrated in flexible loops. We also observed that Omicron variants BA.1 and BA.2 exhibit immune evasion through receptor binding domain (RBD) mutations, although these mutations reduce structural stability. Interestingly, the NTD has evolved to increase stability, compensating for the RBD instability and resulting in heightened overall infectivity. Our findings, available in SpikeScanDB, emphasize the importance of spike expression levels and compensatory mutations in both the NTD and RBD domains for shaping Omicron variant infectivity.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

ABSTRACT

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.30.510331

ABSTRACT

Infection of the lungs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin I converting enzyme 2 (ACE2) receptor induces a type of systemic inflammation known as a cytokine storm. However, the precise mechanisms involved in severe coronavirus disease 2019 (COVID-19) pneumonia are unknown. Here, we show that interleukin-10 (IL-10) changed normal alveolar macrophages into ACE2-expressing M2c-type macrophages that functioned as spreading vectors for SARS-CoV-2 infection. The depletion of alveolar macrophages and blockade of IL-10 attenuated SARS-CoV-2 pathogenicity. Furthermore, genome-wide association and quantitative trait locus analyses identified novel mRNA transcripts in human patients, COVID-19 infectivity enhancing dual receptor (CiDRE), which has unique synergistic effects within the IL-10-ACE2 system in M2c-type macrophages. Our results demonstrate that alveolar macrophages stimulated by IL-10 are key players in severe COVID-19. Collectively, CiDRE expression levels are potential risk factors that predict COVID-19 severity, and CiDRE inhibitors might be useful as COVID-19 therapies.


Subject(s)
Coronavirus Infections , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Inflammation , COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.01.502275

ABSTRACT

Many patients with severe COVID-19 suffer from pneumonia, and thus elucidation of the mechanisms underlying the development of such severe pneumonia is important. The ORF8 protein is a secreted protein of SARS-CoV-2, whose in vivo function is not well understood. Here, we analyzed the function of ORF8 protein by generating ORF8-knockout SARS-CoV-2. We found that the lung inflammation observed in wild-type SARS-CoV-2-infected hamsters was decreased in ORF8-knockout SARS-CoV-2-infected hamsters. Administration of recombinant ORF8 protein to hamsters also induced lymphocyte infiltration into the lungs. Similar pro-inflammatory cytokine production was observed in primary human monocytes treated with recombinant ORF8 protein. Furthermore, we demonstrate that the serum ORF8 protein levels are correlated well with clinical markers of inflammation. These results demonstrated that the ORF8 protein is a viral cytokine of SARS-CoV-2 involved in the in the immune dysregulation observed in COVID-19 patients, and that the ORF8 protein could be a novel therapeutic target in severe COVID-19 patients.


Subject(s)
Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
7.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1320609.v1

ABSTRACT

A cytokine storm induces acute respiratory distress syndrome, the main cause of death in coronavirus disease 2019 (COVID-19) patients. However, the detailed mechanisms of cytokine induction due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear. To examine the cytokine production in COVID-19, we mimicked the disease in SARS-CoV-2-infected alveoli by adding the lysate of SARS-CoV-2-infected cells to cultured macrophages or induced pluripotent stem cell-derived myeloid cells. The cells secreted interleukin (IL)-6 after the addition of SARS-CoV-2-infected cell lysate. Screening of 25 SARS-CoV-2 protein-expressing plasmids revealed that the N protein-coding plasmid alone induced IL-6 production. The addition of anti-N antibody further enhanced IL-6 production, but the F(ab’)2 fragment did not. Sera from COVID-19 patients also enhanced IL-6 production, and sera from patients with severer disease induced higher levels of IL-6. These results suggest that anti-N antibody promotes IL-6 production in SARS-CoV-2-infected alveoli, leading to the cytokine storm of COVID-19. (150 words)


Subject(s)
COVID-19
8.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1271053.v2

ABSTRACT

Patients with severe COVID-19 exhibit a cytokine storm characterized by greatly elevated levels of cytokines during worsening disease. Despite this, the interferon (IFN) response is delayed, contributing to disease progression. Here, we report that SARS-CoV-2 generates excessive amounts of small viral RNAs (svRNAs) encoding exact 5′ ends of positive-sense genes in human cells, whereas significantly fewer similar svRNAs are produced by endemic human coronaviruses (OC43 and 229E). SARS-CoV-2 5′ end svRNAs are RIG-I agonists associated with IFN-beta expression in later stages of infection. The first 60-nt ends bearing duplex structures and 5′-triphosphates are responsible for immune-stimulation. The 5′ end svRNAs were also produced during infection ex vivo and in vivo. The delta variant retains the robust 5′ end svRNA production of the parental strain, whereas omicron (BA.1 and BA.2) produces little of these erroneous svRNAs. We propose that RIG-I activation by accumulated 5′ end svRNAs overcomes the initial IFN antagonistic ability of viral proteins and contributes to drive late over-exuberant IFN production leading to the development of severe COVID-19 and suggest that evolutionary modification of SARS-CoV-2 5′ end svRNA production may correlate with the reduced disease severity likely seen with omicron (BA.1 and BA.2).


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.474055

ABSTRACT

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-{beta} but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-{beta}. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


Subject(s)
Coronavirus Infections
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473804

ABSTRACT

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains an unusually high number of mutations (>30) in the spike protein, raising concerns of escape from vaccines, convalescent sera and therapeutic drugs. Here we analyze the alteration of neutralizing titer with Omicron pseudovirus. Sera of 3 months after double BNT162b2 vaccination exhibit approximately 18-fold lower neutralization titers against Omicron. Convalescent sera from Alpha and Delta patients allow similar levels of breakthrough by Omicron. However, some Delta patients have relatively preserved neutralization efficacy, comparable to 3-month double BNT162b2 vaccination. Domain-wise analysis using chimeric spike revealed that this efficient evasion was, at least in part, caused by multiple mutations in the N-terminal domain. Omicron escapes the therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective against Omicron. The ACE2 decoy is another virus-neutralizing drug modality that is free, at least in theory, from mutational escape. Deep mutational analysis demonstrated that, indeed, the engineered ACE2 overcomes every single-residue mutation in the receptor-binding domain, similar to immunized sera. Like previous SARS-CoV-2 variants, Omicron and some other sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.24.432656

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the coronavirus disease 2019 pandemic. ORF6 is known to antagonize the interferon signaling by inhibiting the nuclear translocation of STAT1. Here we show that ORF6 acts as a virulence factor through two distinct strategies. First, ORF6 directly interacts with STAT1 in an IFN-independent manner to inhibit its nuclear translocation. Second, ORF6 directly binds to importin 1, which is a nuclear transport factor encoded by KPNA2, leading to a significant suppression of importin 1-mediated nuclear transport. Furthermore, we found that KPNA2 knockout enhances the viral replication, suggesting that importin 1 suppresses the viral propagation. Additionally, the analyses of gene expression data revealed that importin 1 levels decreased significantly in the lungs of older individuals. Taken together, SARS-CoV-2 ORF6 disrupts the nucleocytoplasmic trafficking to accelerate the viral replication, resulting in the disease progression, especially in older individuals.


Subject(s)
Coronavirus Infections , COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.299891

ABSTRACT

The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor via receptor binding domain (RBD) to enter into the cell. Inhibiting this interaction is a main approach to block SARS-CoV-2 infection and it is required to have high affinity to RBD independently of viral mutation for effective protection. To this end, we engineered ACE2 to enhance the affinity with directed evolution in human cells. Three cycles of random mutation and cell sorting achieved more than 100-fold higher affinity to RBD than wild-type ACE2. The extracellular domain of modified ACE2 fused to the Fc region of the human immunoglobulin IgG1 had stable structure and neutralized SARS-CoV-2 pseudotyped lentivirus and authentic virus with more than 100-fold lower concentration than wild-type. Engineering ACE2 decoy receptors with directed evolution is a promising approach to develop a SARS-CoV-2 neutralizing drug that has affinity comparable to monoclonal antibodies yet displaying resistance to escape mutations of virus.


Subject(s)
COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.25.115600

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease that causes fatal disorders including severe pneumonia. To develop a therapeutic drug for COVID-19, a model that can reproduce the viral life cycle and evaluate the drug efficacy of anti-viral drugs is essential. In this study, we established a method to generate human bronchial organoids (hBO) from commercially available cryopreserved human bronchial epithelial cells and examined whether they could be used as a model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research. Our hBO contain basal, club, ciliated, and goblet cells. Angiotensin-converting enzyme 2 (ACE2), which is a receptor for SARS-CoV-2, and transmembrane serine proteinase 2 (TMPRSS2), which is an essential serine protease for priming spike (S) protein of SARS-CoV-2, were highly expressed. After SARS-CoV-2 infection, not only the intracellular viral genome, but also progeny virus, cytotoxicity, pyknotic cells, and moderate increases of the type I interferon signal could be observed. Treatment with camostat, an inhibitor of TMPRSS2, reduced the viral copy number to 2% of the control group. Furthermore, the gene expression profile in SARS-CoV-2-infected hBO was obtained by performing RNA-seq analysis. In conclusion, we succeeded in generating hBO that can be used for SARS-CoV-2 research and COVID-19 drug discovery. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=200 SRC="FIGDIR/small/115600v2_ufig1.gif" ALT="Figure 1"> View larger version (99K): org.highwire.dtl.DTLVardef@13a6908org.highwire.dtl.DTLVardef@1c59300org.highwire.dtl.DTLVardef@362167org.highwire.dtl.DTLVardef@1cb31ed_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Insomnia, Fatal Familial , Pneumonia , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL